The area of a circle by slicing
							Home -> Solved problems -> The area of a circle by slicing						
				 
															Solution
							The main idea is to divide a circle into rectangular slices.						
				 
															
							\[\begin{gathered}
R^2=x_i^2+y_i^2 \\\\
x_i=\sqrt{R^2-y_i^2}
\end{gathered}\]						
				
							The area of the \(i^{\text {th}}  \) slice is						
				
							\[A_i=2 x_i \Delta y=2 \sqrt{R^2-y_i^2} \Delta y\]						
				
							Now let’s calculate the area of the circle:						
				
							\[A=\lim _{n \rightarrow+\infty} \sum_{i=1}^n A_i=\lim _{n \rightarrow+\infty} \sum_{i=1}^n 2 \sqrt{R^2-y_i^2} \Delta y=\int_{-R}^R 2 \sqrt{R^2-y^2} d y\]						
				
							Let						
				
							\[\begin{aligned}
& y=R \sin \theta \\\\
& d y=R \cos \theta d \theta
\end{aligned}\]						
				
							\[\begin{aligned}
& \mathrm{A}=2 \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sqrt{R^2-R^2 \sin ^2 \theta} \mathrm{R} \cos \theta d \theta=2 \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sqrt{R^2\left(1-\sin ^2 \theta\right)} \mathrm{R} \cos \theta d \theta \\\\
& =2 \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} R \sqrt{\cos ^2 \theta} \mathrm{R} \cos \theta d \theta=2 R^2 \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos ^2 \theta d \theta \\\\
& \cos ^2 \theta=\frac{1}{2}(1+\cos 2 \theta) \\\\
& A=2 R^2 \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{1}{2}(1+\cos 2 \theta) d \theta \\\\
& =R^2\left[\theta+\frac{\sin 2 \theta}{2}\right]_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \\\\
& =\pi R^2 \\\\
& A=\pi R^2
\end{aligned}\]						
				
							Home -> Solved problems -> The area of a circle by slicing						
				Every problem you tackle makes you smarter.
↓ Scroll down for more maths problems↓
			Find the equation of the curve formed by a cable suspended between two points at the same height 		
				
			Prove that the function \(f(x)=\frac{x^{3}+2 x^{2}+3 x+4}{x}
\) has a curvilinear asymptote \(y=x^{2}+2 x+3\) 		
				
			Why does the number \(98\) disappear when writing the decimal expansion of \(\frac{1}{9801}\) ? 		
				
			if we draw an infinite number of circles packed in a square using the method shown below, will the sum of circles areas approach the square's area?		
				
			Is it possible to solve for \(x\) so that \(ln(x)\), \(ln(2x)\), and \(ln(3x)\) form a right triangle?		
				
 
								 
								 
								 
								 
								 
								 
								 
								 
								 
								 
								 
								 
								 
								 
								 
								 
								 
								 
								 
								 
								 
								 
								 
								 
								 
								 
								 
								 
								 
								 
								 
								 
								 
								 
								 
								 
								 
								 
								 
								 
								 
								 
								 
								 
								 
								 
								 
								 
								 
								 
								 
								 
								 
								 
								 
								 
								 
								 
								 
								 
								 
								 
								 
								 
								 
								 
								 
								 
								 
								 
								 
								 
								 
								 
								 
								 
								 
								 
								 
								 
								 
								 
								 
								 
								 
								 
								 
								 
								 
								 
								