Home -> Solved problems -> Euler’s identity Euler's identity Solution To start, let’s expand the exponential function \[e^{z}=1+\frac{z}{1 !}+\frac{z^{2}}{2 !}+\ldots+\frac{z^{n}}{n !}+\cdots\] \(z=x+iy\), putting \(x=0\) we get \(z=iy\) \begin{aligned} e^{i y} &=1+\frac{i y}{1 !}+\frac{(i y)^{2}}{2 !}+\frac{(i y)^{3}}{3 !}+\frac{(i y)^{4}}{4 !}+\cdots \\ &=\left(1-\frac{y^{2}}{2 !}+\frac{y^{4}}{4 !}-\cdots\right)+i\left(y-\frac{y^{3}}{3 !}+\frac{y^{5}}{5 !}-\cdots\right) \\ &=\cos y+i \sin y \end{aligned} \[e^{z}=e^{x} e^{i y}=e^{x}(\cos y+i \sin y)\] \[\begin{aligned} x+i y &=\gamma(\cos \theta+i \sin \theta)=\gamma e^{i \theta} \\ z &=x+i y \quad[\text { cartesian form ] }\\ &=\gamma(\sin \theta+i \sin \theta) \quad[\text { polar form ]} \\ &\left.=\gamma e^{i \theta} \quad \text { [ exponential form }\right] \end{aligned}\] \[\begin{aligned} &-1=-1+i(0) \\ &\Rightarrow \gamma= \sqrt{(-1)^{2}}=1 \\ &\Rightarrow \theta=\pi \\ &\Rightarrow e^{i\pi}=-1 \end{aligned} \] Home -> Solved problems -> Euler’s identity Related Topics Find the volume of the square pyramid as a function of \(a\) and \(H\) by slicing method. Solution Prove that \[\lim_{x \rightarrow 0}\frac{\sin x}{x}=1\] Solution Prove that Solution Calculate the half derivative of \(x\) Solution Prove Wallis Product Using Integration Solution Calculate the radius R Solution Calculate the volume of Torus using cylindrical shells Solution Find the derivative of exponential \(x\) from first principles Solution Calculate the sum of areas of the three squares Solution Find the equation of the curve formed by a cable suspended between two points at the same height Solution Solve the equation for real values of \(x\) Solution Solve the equation for \(x\epsilon\mathbb{R}\) Solution Determine the angle \(x\) Solution Calculate the following limit Solution Calculate the following limit Solution Calculate the integral Solution Challenging problem Solution Prove that Solution Home -> Solved problems -> Euler’s identity Share the solution: Euler's identity