Home -> Solved problems -> Derivative of exponential x

Proof: Derivative of exponential x from first principles

Solution

The derivative of the exponential function can be derived directly from first principles, without relying on pre-known differentiation rules. In this exercise, we will start from the definition of the derivative and show, step by step, that:

\[ \frac{d}{dx}(e^x) = e^x \]

By following the algebraic reasoning carefully, you’ll understand why the exponential function is unique in that its rate of change is equal to its own value.

To start, we define a function \(f\) such that \[f\left(x\right)=e^{x}\;\;\;\;\;\;\;,\; x\epsilon\mathbb{C}\] By definition \[e^{x}=\lim_{n \rightarrow \infty}\left(1+\frac{x}{n}\right)^{n}\] Now let’s calculate the derivative of the function f \[f’\left(x\right)=\lim_{\delta x \rightarrow 0}\frac{f\left(x+\delta x\right)-f\left(x\right)}{\delta x}\] \[=\lim_{\delta x \rightarrow 0}\frac{e^{x+\delta x}-e^{x}}{\delta x}\] \[=\lim_{\delta x \rightarrow 0}\lim_{n \rightarrow \infty}\frac{1}{\delta x}\left(\left(1+\frac{x+\delta x}{n}\right)^{n}-e^{x}\right)\] \[=\lim_{\delta x \rightarrow 0}\lim_{n \rightarrow \infty}\frac{1}{\delta x}\left(\left(\left(1+\frac{x}{n}\right)+\frac{\delta x}{n}\right)^{n}-e^{x}\right)\] Now let’s use the Binomial theorem, according to the theorem we can expand any non-negative power of \(a+b\) into a sum \[\color{olive} {(a+b)^{n}=\left(\begin{array}{c}n\\ 0\end{array}\right)a^{n}b^{0}+\left(\begin{array}{c}n\\ 1\end{array}\right)a^{n-1}b^{1}+\left(\begin{array}{c}n\\ 2\end{array}\right)a^{n-2}b^{2}+\cdots +\left(\begin{array}{c}n\\ n-1\end{array}\right)a^{1}b^{n-1}+\left(\begin{array}{c}n\\ n\end{array}\right)a^{0}b^{n}}\] Therefore \[f’ \left(x\right)=\lim_{\delta x \rightarrow 0}\lim_{n \rightarrow \infty}\frac{1}{\delta x}\left(\left(1+\frac{x}{n}\right)^{n}+\left(\begin{array}{c}n\\ 1\end{array}\right)\left(1+\frac{x}{n}\right)^{n-1}\left(\frac{\delta x}{n}\right)+\cdot\cdot\cdot+\left(\frac{\delta x}{n}\right)^{n}-e^{x}\right)\] \[=\lim_{\delta x \rightarrow 0}\lim_{n \rightarrow \infty}\left(\frac{\left(1+\frac{x}{n}\right)^{n}-e^{x}}{\delta x}+\left(\begin{array}{c}n\\ 1\end{array}\right)\left(1+\frac{x}{n}\right)^{n-1}\left(\frac{1}{n}\right)+\left(\begin{array}{c}n\\ 2\end{array}\right)\left(1+\frac{x}{n}\right)^{n-2}\left(\frac{\delta x}{n^{2}}\right)+\cdot\cdot\cdot+\frac{\left(\delta x\right)^{n-1}}{n^{n}}\right)\] \[=\left(\lim_{\delta x \rightarrow 0}\frac{e^{x}-e^{x}}{\delta x}\right)+\lim_{n \rightarrow \infty}\left(\left(\begin{array}{c}n\\ 1\end{array}\right)\left(1+\frac{x}{n}\right)^{n-1}\left(\frac{1}{n}\right)+\left(\begin{array}{c}n\\ 2\end{array}\right)\left(1+\frac{x}{n}\right)^{n-2}\left(\frac{0}{n^{2}}\right)+\cdot\cdot\cdot+\frac{0}{n^{n}}\right)\] \[=\frac{0}{0}+\lim_{n \rightarrow \infty}\left(\left(\begin{array}{c}n\\ 1\end{array}\right)\left(1+\frac{x}{n}\right)^{n-1}\left(\frac{1}{n}\right)+0+\cdot\cdot\cdot+0\right)\] We have an indeterminate form \(\frac{0}{0}\), so to fix that we use Hospital’s Rule, thus \[f’ \left(x\right)=\left(\lim_{\delta x \rightarrow 0}\frac{0}{1}\right)+\lim_{n \rightarrow \infty}\left(\begin{array}{c}n\\ 1\end{array}\right)\left(1+\frac{x}{n}\right)^{n-1}\left(\frac{1}{n}\right)\] \[=\lim_{n \rightarrow \infty}\left(\begin{array}{c}n\\ 1\end{array}\right)\left(\frac{1}{n}\right)\left(1+\frac{x}{n}\right)^{n-1}\] We have \[\left(\begin{array}{c}n\\ 1\end{array}\right)\left(\frac{1}{n}\right)=\frac{n!}{1!\left(n-1\right)!}=n\left(\frac{1}{n}\right)=1\] Finally \[f’\left(x\right)=\lim_{n \rightarrow \infty}\left(1+\frac{x}{n}\right)^{n-1}\] \[=\lim_{n \rightarrow \infty}\frac{\left(1+\frac{x}{n}\right)^{n}}{\left(1+\frac{x}{n}\right)}\] \[=\frac{e^{x}}{1}=e^{x}\] Hence \[\large \frac{\text{d}}{\text{d}x}e^{x}=e^{x}\]

For more solved exercises, visit our Solved Exercises page.

Home -> Solved problems -> Derivative of exponential x

Related Topics

Find the volume of the square pyramid as a function of \(a\) and \(H\) by slicing method.
Prove that \[\lim_{x \rightarrow 0}\frac{\sin x}{x}=1\]
Prove that
Calculate the half derivative of \(x\)
Prove Wallis Product Using Integration
Calculate the radius R
Calculate the volume of Torus using cylindrical shells
Find the derivative of exponential \(x\) from first principles
Calculate the sum of areas of the three squares
Find the equation of the curve formed by a cable suspended between two points at the same height
Solve the equation for real values of \(x\)
Solve the equation for \(x\epsilon\mathbb{R}\)
Determine the angle \(x\)
Calculate the following limit
Calculate the following limit
Calculate the integral
Home -> Solved problems -> Derivative of exponential x

Share the solution: Derivative of exponential x