Home -> Solved problems -> Calculate the integral
Solution
\[\int_{0}^{1} \frac{x^{4}(1-x)^{4}}{1+x^{2}} d x=?\]
The integral is well defined. Next, let’s use the binomial theorem
\[(1-x)^{4}=x^{4}-4 x^{3}+6 x^{2}-4 x+1\]
\[x^{4}(1-x)^{4}=x^{8}-4 x^{7}+6 x^{6}-4 x^{5}+x^{4}\]
Now, let’s use polynomial division, we get
\[\frac{x^{4}(1-x)^{4}}{1+x^{2}}=x^{6}-4 x^{5}+5 x^{4}-4 x^{2}+4-\frac{4}{x^{2}+1}\]
\[\Rightarrow \int_{0}^{1} \frac{x^{4}(1-x)^{4}}{1+x^{2}} d x=\int_{0}^{1}\left(x^{6}-4 x^{5}+5 x^{4}-4 x^{2}+4-\frac{4}{x^{2}+1}\right) d x\]
\[=\frac{x^{7}}{7}-\frac{4 x^{6}}{6}+x^{5}-\frac{4 x^{3}}{3}+4 x-\left.4 \arctan (x)\right|_{0} ^{1}\]
\[=\frac{1}{7}-\frac{4}{6}+1-\frac{4}{3}+4-4\left(\frac{\pi}{4}\right)-(0-0+0-0+0-4(0))\]
\[=\frac{22}{7}-\pi\]
Share the solution on facebook from here :
Home -> Solved problems -> Calculate the integral
Every problem you tackle makes you smarter.
↓ Scroll down for more maths problems↓
Prove that the function \(f(x)=\frac{x^{3}+2 x^{2}+3 x+4}{x}
\) has a curvilinear asymptote \(y=x^{2}+2 x+3\)
Why does the number \(98\) disappear when writing the decimal expansion of \(\frac{1}{9801}\) ?
if we draw an infinite number of circles packed in a square using the method shown below, will the sum of circles areas approach the square's area?
Home -> Solved problems -> Calculate the integral