Solve for a^6
Home -> Solved problems -> Solve for a^6
Solution
\[\begin{gathered}
a^2-a-1=0 ,a>0\\\\
a=\frac{-(-1) \pm \sqrt{(-1)^2-4(1)(-1)}}{2(1)} \\\\
a=\frac{1+\sqrt{5}}{2}, a=\frac{1-\sqrt{5}}{2}<0 \\\\
\Rightarrow a=\frac{1+\sqrt{5}}{2}
\end{gathered}\]
\[\begin{aligned}
&\left(a^2\right)^3=(a+1)^3 \\\\
&a^6=a^3+3 a^2(1)+3 a(1)^2+(1)^3 \\\\
&a^6=a^3+3 a^2+3 a+1 \\\\
&a^6=a^2+a+3 a^2+3 a+1 \\\\
&a^6=4 a^2+4 a+1 \\\\
&a^6=4(a+1)+4 a+1 \\\\
&a^6=4 a+4+4 a+1 \\\\
&a^6=8 a+5
\end{aligned}\]
\[\begin{aligned}
a^6 &=8 a+5 \\\\
a^6 &=8\left(\frac{1+\sqrt{5}}{2}\right)+5 \\\\
a^6 &=4(1+\sqrt{5})+5 \\\\
a^6 &=4+4 \sqrt{5}+5 \\\\
a^6 &=9+4 \sqrt{5}
\end{aligned}\]
Home -> Solved problems -> Solve for a^6
Every problem you tackle makes you smarter.
↓ Scroll down for more maths problems↓
Find the equation of the curve formed by a cable suspended between two points at the same height
Prove that the function \(f(x)=\frac{x^{3}+2 x^{2}+3 x+4}{x}
\) has a curvilinear asymptote \(y=x^{2}+2 x+3\)
Why does the number \(98\) disappear when writing the decimal expansion of \(\frac{1}{9801}\) ?
if we draw an infinite number of circles packed in a square using the method shown below, will the sum of circles areas approach the square's area?
Is it possible to solve for \(x\) so that \(ln(x)\), \(ln(2x)\), and \(ln(3x)\) form a right triangle?