Home -> Solved problems -> 98 disappear
Why does the number \(98\) disappear when writing the decimal expansion of \(\frac{1}{9801}\) ?
Solution
We have \[\frac{1}{99 \cdot 99}=\frac{1}{9801}\] \[=0.000102030405 \ldots 9596979900010203 \ldots\] Now, let’s find the MacLaurin / Taylor Series for \(f(x)=\frac{1}{1-x}\)
\[\frac{1}{1-x}=1+x+x^{2}+x^{3}+x^{4}+\cdots\;\;\;\;\;\;\;|x|<1\] \[\Rightarrow\frac{1}{(1-x)(1-x)}=1+2 x+3 x^{2}+4 x^{3}+5 x^{4}+\cdots\;\;\;\;\;\;\;|x|<1\]
Let \(x=10^{-2}\), we can explain the pattern expanded from \(\frac{1}{9801}\). the reason for disappearance of the number \(98\) is caused by the propagation of the carry \(1\) from \(100x^{99}\).
Similar patterns can be deduced by putting \(x=10^{-1}, 10^{-3}, 10^{-4}, 10^{-5}, \ldots\) to get \[\frac{1}{9 \cdot 9}, \frac{1}{999 \cdot 999}, \frac{1}{9999 \cdot 9999}, \frac{1}{99999 \cdot 99999}, \ldots\]
Home -> Solved problems -> 98 disappear
Related Topics
Home -> Solved problems -> 98 disappear