Home -> Solved problems -> Prove the following equality Prove the following Solution Let \(f\) be a function such that for \(x \in \mathbb{R}: f(x)=\cos 2 x+\cos 6 x+\cos 10 x\) \[\begin{aligned} &2 \sin 2 x f(x)=2 \sin 2 x \cdot \cos 2 x+2 \sin 2 x \cdot \cos 6 x+2 \sin 2 x \cos 10 x \\\\ &=\sin 4 x+\sin (2 x+6 x)+\sin (2 x-6 x)+\sin (2 x+10 x)+\sin (2 x-10 x) \\\\ &=\sin 4 x+\sin 8 x-\sin 4 x+\sin 12 x-\sin 8 x \\\\ &=\sin 12 x \end{aligned}\] \[\text { Let } x=\frac{\pi}{14}: 2 \sin \frac{2 \pi}{14} \cdot f\left(\frac{\pi}{14}\right)=\sin \frac{12 \pi}{14}\] \[\begin{aligned} &\Leftrightarrow 2 \sin \frac{\pi}{7} f\left(\frac{\pi}{14}\right)=\sin \frac{6 \pi}{7} \\\\ &\Leftrightarrow f\left(\frac{\pi}{14}\right)=\frac{\sin \frac{6 \pi}{7}}{2 \sin \frac{\pi}{7}}=\frac{\sin \left(\pi-\frac{\pi}{7}\right)}{2 \sin \frac{\pi}{7}}=\frac{\sin \frac{\pi}{7}}{2 \sin \frac{\pi}{7}}=\frac{1}{2} \end{aligned}\] \[\begin{aligned} \sin ^{2} \frac{\pi}{14}+\sin ^{2} \frac{3 \pi}{14}+\sin ^{2} \frac{5 \pi}{14} &=\frac{1-\cos \frac{2 \pi}{14}}{2}+\frac{1-\cos \frac{6 \pi}{14}}{2}+\frac{1-\cos \frac{10 \pi}{14}}{2} \\\\ =& \frac{3-\left(\cos \frac{\pi}{7}+\cos \frac{3 \pi}{7}+\cos \frac{5 \pi}{7}\right)}{2}=\frac{3-f\left(\frac{\pi}{14}\right)}{2} \\\\ &=\frac{3-\frac{1}{2}}{2}=\frac{5}{4} \end{aligned}\] Home -> Solved problems -> Prove the following equality Related Topics Find the volume of the square pyramid as a function of \(a\) and \(H\) by slicing method. Solution Prove that \[\lim_{x \rightarrow 0}\frac{\sin x}{x}=1\] Solution Prove that Solution Calculate the half derivative of \(x\) Solution Prove Wallis Product Using Integration Solution Calculate the radius R Solution Calculate the volume of Torus using cylindrical shells Solution Find the derivative of exponential \(x\) from first principles Solution Calculate the sum of areas of the three squares Solution Find the equation of the curve formed by a cable suspended between two points at the same height Solution Solve the equation for real values of \(x\) Solution Solve the equation for \(x\epsilon\mathbb{R}\) Solution Determine the angle \(x\) Solution Calculate the following limit Solution Calculate the following limit Solution Calculate the integral Solution Challenging problem Solution Prove that Solution Prove that \(e\) is an irrational number Solution Find the derivative of \(y\) with respect to \(x\) Solution Find the limit of width and height ratio Solution How Tall Is The Table ? Solution Why 0.9999999...=1 Solution Solve the equation for \(x \in \mathbb{R}\) Solution Calculate the following Solution Home -> Solved problems -> Prove the following equality Share the solution: Prove the following equality