## Proof without words: $$\frac{1}{2}+\frac{1}{2^{2}}+\frac{1}{2^{3}}+\cdots=1$$

### Explanation

We can extract from the next figure the following infinite sum
$\frac{1}{2}+\frac{1}{8}+\frac{1}{32}+\frac{1}{128}+\cdots$
The same thing for the next figure
$\frac{2}{8}+\frac{2}{32}+\frac{2}{128}+\frac{2}{512}+\cdots$
Now, let’s focus on the next figure to find out the result we get
\begin{aligned} &\left(\frac{1}{2}+\frac{1}{8}+\frac{1}{32}+\frac{1}{128}+\cdots\right)+\left(\frac{2}{8}+\frac{2}{32}+\frac{2}{128}+\frac{2}{512}+\cdots\right)=1 \\ &\left(\frac{1}{2}+\frac{1}{8}+\frac{1}{32}+\frac{1}{128}+\cdots\right)+\left(\frac{1}{4}+\frac{1}{16}+\frac{1}{64}+\frac{1}{256}+\cdots\right)=1 \\ &\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\frac{1}{256}+\cdots=1 \\ &\frac{1}{2}+\frac{1}{2^{2}}+\frac{1}{2^{3}}+\frac{1}{2^{4}}+\frac{1}{2^{5}}+\frac{1}{2^{6}}+\frac{1}{2^{7}}+\frac{1}{2^{8}}+\cdots=1 \end{aligned}

### Related Topics

Find the volume of the square pyramid as a function of $$a$$ and $$H$$ by slicing method.
Prove that $\lim_{x \rightarrow 0}\frac{\sin x}{x}=1$
Prove that
Calculate the half derivative of $$x$$
Prove Wallis Product Using Integration
Find the derivative of exponential $$x$$ from first principles
Solve the equation for real values of $$x$$
Solve the equation for $$x\epsilon\mathbb{R}$$
Determine the angle $$x$$